

Acids and Bases 1

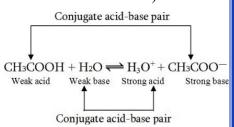
Water

- Water is a **polar** molecule due to the <u>difference electronegativity</u> between H & O and it is <u>angular</u>
- Water molecules form a network by H-bonding, making it highly **cohesive** aiding in the movement of water along the plants against gravity
- It works as an excellent solvent because it is a small molecule and it can form Electrostatic and Hydrogen bonds with other polar molecules
 Electrostatic can be dipole dipole or dipole charge interactions
- Water molecule is reactive because it is a **nucleophile**
 - Nucleophile: Electron-rich molecule which is attracted to positively charged and electron-deficient molecules (Electrophiles)
- Water can be ionized forming a positive hydronium (proton) and a negative hydroxide ion
 - The equilibrium of pure water ionization is toward forming water

Acids & Bases

- Bronsted- Lowry definition for acids and bases:
 - > Acid: a substance that donate (produce) H^+ (Proton donor) when dissolved in water forming H_3O^+
 - > They are classified into:
 - ✓ Monoprotic acids: can donate only <u>1 proton</u>, such as HCl, HNO₃ and CH₃COOH
 - ✓ Diprotic acids: can donate <u>2 protons</u>, such as H₂SO₄
 - ✓ Triprotic acids: can donate <u>3 protons</u>, such as H₃PO₃

$$\begin{array}{ccc} H \longrightarrow CI & + & H \longrightarrow \ddot{O}: & \longrightarrow & \left[H \longrightarrow \ddot{O} \longrightarrow H \right]^{+} + & CI^{-} \\ & \downarrow & H & H \end{array}$$


- **Base:** a substance that accept H⁺ (Proton acceptor) when dissolved in water forming OH⁻
 - ✓ Examples: NaOH, NH₃, KOH

$$H \stackrel{\text{in}}{\underset{H}{\overset{H}{\longrightarrow}}} H(g) + H_2O(l) \rightleftharpoons H \stackrel{\text{in}}{\underset{H}{\longrightarrow}} H(aq) + OH^-(aq)$$

TI

- Water is an amphoteric substance (can act as an acid in one reaction and as a base in another)

With acids (such as Hydrochloric acid HCl) water acts as a base HCl + H₂O ≒ H₃O⁺ + Cl⁻

^{ŏ⁺}H - CI / ^H - ĈI

 $H_2O + H_2O \longleftrightarrow H_3O^{\oplus} + OH^{\ominus}$

δ⁺H - Cl

The strength of Acids & Bases

- Strength of acids and bases: ability to release and accept protons, it differs between different molecules
 The stronger the acid = the weaker the conjugate base and vice versa
- Strong acids and bases ionize **completely**, so the reaction is a **one-way reaction**
 - Strong Acids dissociate completely 100%
 - Strong bases have **strong affinity** for proton
- Weak acids and bases ionize **Partially**, and the reaction is a **reverse reaction**
 - > In multi-protic acids each proton is donated at different strength

 $HC_{2}H_{3}O_{2} \leftrightarrows H^{+} + C_{2}H_{3}O_{2}$ $NH_{3} + H_{2}O \leftrightarrows NH_{4}^{+} + OH^{-}$

 $HCl \rightarrow H^+ + Cl^-$

 $NaOH \rightarrow Na^{+} + OH^{-}$

- Strong acids: HCl, HBr, HI, HNO₃, HClO₄, H₂SO₄
- Strong bases: LiOH, NaOH, KOH, Ca(OH)₂, Ba(OH)₂, Sr(OH)₂

***** K_a (acid dissociation constant) & pK_a

- We can find out this constant using the equilibrium constant (K_{eq}) for the reaction (HA ≒ H⁺ + A⁻)
 ► Equilibrium is the state when the rate of the forward reaction = the rate of the backward reaction
- HA: acid / A⁻: conjugate base
- $[H^+] = [H3O^+] = [A^-]$
- The value of Ka indicates:
 - > If K_a is larger than 1 \rightarrow the product side is favored \rightarrow more dissociation \rightarrow more acidic
 - > If K_a is smaller than 1 \rightarrow the reactants side is favored \rightarrow less dissociation \rightarrow less acidic
- $pK_a = -\log K_a$
 - > Ka is inversely related to pKa
 - ▶ Larger $K_a \rightarrow \text{smaller } pK_a \rightarrow \text{more dissociation} \rightarrow \text{stronger acid}$
- Example: Find the K_a and pK_a of a 0.04 M weak acid HA whose [H⁺] is 10⁻⁴
 K_a = 2.5 × 10⁻⁷, pK_a = 6.6

* Measurements of concentration

- We use concentration (Molarity) to express solutions
 - Molarity (M) = Number of moles / Volume (L)
 - Number of moles = Mass (gram) / MW (gram/mole)
- Example: How many grams do you need to make 5M NaCl solution in 100 ml (MW 58.4)?
 > 29.29g
- We use Equivalent (Eq) to express acids, bases & ions

Equivalent in acids and bases

- It is the number of **moles** (of H⁺ or OH⁻)
 - 1 mol of HCl = 1 mol of $[H^+] = 1$ Eq
 - 1 mol of NaOH = 1 mol of $[OH^-] = 1$ Eq
- If we have a multi-protic acid → it should be multiplied by the number of moles of the proton
 1 mol of H₂SO₄ = 2 mol of [H⁺] = 2 Eq

Equivalent in ions

 $K_a = \frac{[H^+]}{}$

- The mass of an equivalent of ion (g-Eq) is number of **grams** divided by its charge
 - 1 equivalent of Na⁺ \rightarrow 23.1 g
 - 1 equivalent of $Cl^- \rightarrow 35.5$ g
 - 1 equivalent of $Mg^{+2} \rightarrow 24.3/2 = 12.15g$
- Example: Calculate milligrams of Ca⁺² in blood if total concentration of Ca⁺² is 5 mEq/L (MW= 40):
 100 mg/L

• Important note:

- > 1 Eq of any acid neutralizes (titrates) 1 Eq of any base
- Neutralization requires an equal number of equivalences of the acid and base
- Titration: the slow addition of one solution of a known concentration to a known volume of another solution of unknown concentration until the reaction reaches neutralization
- > Eq of acids and bases = $N \times moles = N \times Volume \times Molarity$

•	 Example: Titration of a 12.0 mL solution of HCl requires 22.4 mL of 0.12 M of NaOH, what is the molarity of HCl ?? 0.224 M
•	 Example: What volume of 0.085 M HNO₃ is required to titrate 15.0 mL of 0.12 M Ba(OH)₂ solution? ▶ 42.35 mL
	Ionization of water
•	 Water dissociates to a slight extent to form hydronium (H3O⁺) & hydroxyl (OH⁻) ions → H₂O ← → H⁺ + OH⁻ > We can refer to hydronium ion (H₃O⁺) as a Hydrogen ion (H⁺)
•	Keq = $[H_3O^+] \times [OH^-] / [H_2O]$ > $[H2O] = 55.6 \text{ moles}$ > Keq = $1.8 \times 10^{-16} \text{ M}$
•	$K_{w} = [H_{3}O^{+}] \times [OH^{-}]$ $(K_{w} \text{ is the equilibrium constant of water})$ $K_{w} = 1 \times 10^{-14}$
•	The product of multiplying $[H_3O^+]$ with $[OH^-]$ must equal 10 ⁻¹⁴ in any solution > Because <u>Pure</u> water is neutral \rightarrow $[H^+] = [OH^-] = (10^{-14/2}) = 10^{-7} M$ > If we add an acid, $[H^+]$ increases and $[OH^-]$ decreases

Past papers

 $[OH^{-}] \, 10^{-14} \,\, 10^{-13} \,\, 10^{-12} \,\, 10^{-11} \,\, 10^{-10} \,\,\, 10^{-9} \,\,\, 10^{-8} \,\,\, 10^{-7} \,\,\, 10^{-6} \,\,\, 10^{-5} \,\,\, 10^{-4} \,\,\, 10^{-3} \,\,\, 10^{-2} \,\,\, 10^{-1} \,\,\, 10^{$

Neutral

More Basic

More Acidic

- 1. Water can form all of these non-covalent interactions, EXCEPT:
 - A. Hydrophobic interactions

 \succ [H⁺] and [OH⁻] are inversely related

Example: What is the $[H^+]$ of a 0.05 M Ba(OH)₂:

- B. Ionic interactions
- C. Hydrogen bonds
- D. Van der Waals

 \blacktriangleright [H⁺] = 10⁻¹³

E. None of the above

2. Given the pKa of different acids, which one will have the strongest conjugate base when being dissociated in water:

A. 3.5

•

- B. 2.9
- C. 4.76
- D. 7.2
- E. 12.4

3. Water has high specific heat, boiling point, melting point & other physical properties due to:

- A. It is an amphipathic molecule
- B. High ion product of water
- C. It can dissociate to protons and hydroxyl groups
- D. It can form Hydrogen bonds with each other
- E. It is an amphipathic molecule

4. What do we mean by ion product of water?

- A. Product of concentrations of hydrogen ions and hydroxyl ions in water or an aqueous solution of an electrolyte
- B. The sum of concentrations of hydrogen ions and hydroxyl ions in water or solution of electrolytes
- C. The product of concentrations of hydrogen ion and hydroxyl ions that are derived only from water molecules in aqueous solution of electrolytes
- D. The number of ionized molecules of H2O in one mole of a pure water
- E. The total number of negatively and positively charged ions in one liter of an aqueous solution of electrolytes

5. The ability of water to form hydrogen bonds is attributed to:

- A. The partial positive charge of O
- B. The partial negative charges of H
- C. Polar covalent bonds between atoms in water molecules
- D. None of the above

6. Water is considered:

- A. Amphipathic
- B. Amphoteric
- C. Non-polar
- D. Buffer

7. What is the concentration of H2PO4 if we have 0.5 eq in 500ml

- A. 0.5 M
- B. 0.25 M
- C. 1 M

