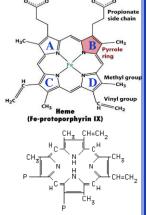


Globular proteins

* Globular proteins


- Hemoproteins: A group of specialized proteins containing heme as a tightly bound prosthetic group
 Prosthetic group: a tightly (covalently) bound, specific non-polypeptide organic (vitamin, sugar, or lipid) or inorganic (such as a metal ion) which is required for the biological function of proteins
- Some types of Hemoproteins:
 - > Myoglobin and hemoglobin: Storage and transport of \underline{O}_2
 - > NOS and Cytochrome P450: Used in the <u>oxygenation</u> reactions
 - **Cyt c and Cyt b**_s: They transfer <u>electrons</u> in the Electron transport chain of the mitochondria
 - Sensor proteins: <u>Sense</u> the amount of heme and gases (such as CO) in the blood

• Heme Group

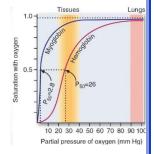
- > It is a prosthetic group that consists of protoporphyrin IX attached to iron (Fe^{+2})
- > Porphyrin is a flat (planar) molecule consisting of **4 pyrrole rings**
 - ✓ Each pyrrole ring has **2 side chains** that are exposed to the outside, where one side chain is a methyl and the other can be a vinyl or propionate group
 - ✓ Each pyrrole ring has a nitrogen, all the **4 nitrogen binds with the Iron**
- > Iron presents in the Fe^{+2} (ferrous) state not in the ferric state (Fe⁺³)
 - ✓ In the ferrous state (Fe⁺²) iron can form <u>6 covalent bonds</u> (4 bonds with N atoms of the pyrrole rings, 1 with N of the imidazole in Proximal His (5th coordination) and 1 bond with O₂ (6th coordination))
- > Heme is a **hydrophobic** molecule
- > The protein environment dictates the function of the heme
- > Upon absorption of light, heme gives a **deep red color**

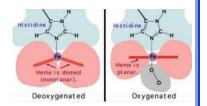
Myoglobin (Mb)

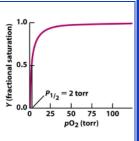
- It is a **monomeric** protein, mainly found in the **muscle** tissue (skeletal muscles)
- The tertiary structure 8 α -Helices (designated from A-H) connected by short non-helical regions
- It can present in 2 forms:
 - Oxymyoglobin: Oxygen-bound form
 - Deoxymyoglobin: Oxygen-free form (not bound to oxygen)
- In Myoglobin and other polar other globular protein, amino acids with polar R-groups are exposed on the <u>surface (hydrophilic)</u>, while those in the <u>interior</u> are predominantly <u>hydrophobic</u>
- Globin fold is a hydrophobic O2 -binding pocket which contains the heme group
 - > The heme group is bound <u>covalently</u> to the myoglobin
 - The propionate groups form <u>electrostatic interactions</u> with the polar amino acids on the surface of the myoglobin
 - **<u>Hydrophobic interactions</u>** between the heme and the globin pocket stabilizes the tertiary structure of myoglobin, and this hydrophobic environment prevents the oxidation of iron from $\underline{Fe^{+2}}$ to $\underline{Fe^{+3}}$
- The only exception is 2 histidine residues present in helix E & F, known as E7 & F8
 - E7: The 7th residue in Helix E and it is also known as the <u>distal histidine</u> which represents a gate that opens and closes allowing the entry of O₂ to the hydrophobic pocket, and it also stabilizes the interaction with oxygen by H-bonding with it
 - **F8:** the 8th residue in Helix F and it is also known as the **proximal histidine** which binds to iron

- Myoglobin stores O₂ in the muscles
- Myoglobin binds O₂ with **high affinity**
 - P50 is the oxygen partial pressure required for 50% of all myoglobin molecules to be bound with oxygen (P50_{myoglobin} ~ 2.8 torrs)
 - At the normal O₂ pressure (pO₂) in tissues (<u>20-40</u> mm Hg), so Mb is almost fully saturated with oxygen
 - > During hypoxia, pO₂ drops suddenly causing quick release of O₂
 - > The Mb-O₂ follows a **hyperbolic saturation curve**

Hemoglobin (Hb)


- Hemoglobin is a **hetero-tetramer** that is made of 4 globin subunits (2 alpha, 2 beta)
 - > It consists of 2 $\alpha\beta$ -protomers
 - Each subunit consists of multiple α-helices (α subunits have 7 helices with 141 A.A & β subunits have 8 helices with 146 A.A), with a heme group in the interior of the protein
- Hydrophobic interactions between α and β subunits stabilize the αβ-dimer
 Hydrophobic amino acids are not only present in the interior of the protein, but also on the surface
- **Electrostatic interactions** (salt bridges) and **hydrogen bonds** exist between the <u>2 different $\alpha\beta$ -dimens</u>

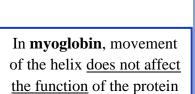

• The saturation curve


- Hemoglobin has a **lower affinity** to O₂ than myoglobin
 - > **p50** of hemoglobin is approximately **26** mm Hg
 - > At 100 mm Hg (in the lungs) hemoglobin is 95-98% saturated (oxyhemoglobin)
 - > As the pO₂ falls (in the tissues), oxygen is released into the cells (unsaturated, deoxyhemoglobin)

• The curve has a **sigmoidal shape**

- > A sigmoidal curve indicates that the protein has different structures
- > The binding of the 4 oxygens is gradual with positive cooperative
- Hemoglobin is an **allosteric protein**
 - Allosteric protein: A multi-subunit protein where <u>binding of a molecule</u> (ligand) to one part of the protein <u>affects binding</u> of a similar or a different ligand to another part of the protein by changing its structure slightly
- Hemoglobin exists in two allosteric forms, T-state and R-state
 - T-state is also known as the "taut" or "tense" state and it has a low-binding affinity to oxygen causing the release of oxygen in the tissues
 - The R-state is known as the "relaxed" state and it has 500 times higher affinity to oxygen than T, causing the binding of oxygen in the lungs
- Binding of O₂ causes slight conformational changes in hemoglobin (**0.4** Å **long and 15**° **degrees only**), converting it from the low affinity T-state to the high affinity R-state
- How does the structure change by the binding of O₂?
 - > The structure becomes flat pulling the proximal His
 - ✓ When heme is <u>free of oxygen</u>, it has a <u>domed</u> structure and iron is outside the plane of the heme, due to the hydrophobic heme is <u>repelled by the proximal His</u>

- When oxygen binds to an iron atom, distal His forms H-bonds with O2 causing the structure to become planar and the iron moves into the plane of the heme pulling proximal histidine (F8) along with it
- Breakage of the electrostatic bonds
 - These changes in tertiary structure of individual hemoglobin subunits breaking the electrostatic interactions at the other oxygenfree hemoglobin chains, changing the quaternary structure of Hb
- So, the sigmoidal curve is caused by the **gradual** binding of O₂ due to the **cooperativity** between the subunits of hemoglobin (**allosteric**)
 - > Oxygen is a homotropic effector (the allosteric modulator is the substrate itself)
 - > Also, the release of one oxygen makes it easier for the next oxygen to be released
- **Homotropic allosteric regulator/effector:** Effector and ligand regulated by the effector are the same molecule (e.g., O2 binding affects subsequent O2 binding)
- Heterotropic allosteric regulator: Effector and ligand are different molecules (H⁺ or BPG binding affects O₂ binding)
- Positive allosteric interaction: effector binding increases affinity for ligand
- Negative allosteric interaction: effector binding decreases affinity for ligand
- This is a **protective mechanism**
 - > Isolated Heme has a higher affinity (thousands of folds) to bind CO than O₂
 - When heme is bound to hemoglobin its affinity toward CO decreases dramatically (CO affinity is only 250 times more than O₂)
 - This decrease is due to the distal His
 - ✓ CO prefers the straight bonding and O₂ prefers the bent bonding
 - > CO occupies 1% of hemoglobin, but 99% if distal His does not exist
- <u>Smoking</u> conditions, CO will bind to iron <u>irreversibly</u> preventing the binding of O₂


Past papers

1. The reason why myoglobin cannot be allosteric is:

- A. Heme doesn't change shape when it binds oxygen
- B. Myoglobin binds with strong affinity to oxygen
- C. Myoglobin is a muscle-specific molecule
- D. Myoglobin is monomeric
- E. Myoglobin is a conjugated protein

2. The sigmoidal shape of the oxygen saturation curve of hemoglobin indicates that:

- A. Hemoglobin is an allosteric protein
- B. Hemoglobin is a hetero-multimeric protein
- C. Hemoglobin is a conjugated protein

- D. Hemoglobin has a prosthetic group
- E. Hemoglobin is a holoprotein

3. Distal histidine has this significant role in hemoglobin:

- A. It stabilizes oxygen binding to heme via the formation of hydrogen bonding with it
- B. It covalently links the heme group to hemoglobin
- C. It makes the affinity of hemoglobin to carbon monoxide lower than that of oxygen
- D. It reduces iron when oxygen is released and iron is oxidized
- E. It prevents the entry of carbon monoxide into the heme binding core

4. What is the usual outcome of mutation in the amino acid residues on the surface of hemoglobin?

- A. Reduced oxygen binding
- B. Protein denaturation
- C. Protein aggregation
- D. Protein instability
- E. Usually nothing major

5. This is how propionate groups of heme molecules are positioned in both myoglobin & hemoglobin

- A. They are covalent linked to distal histidine.
- B. They are oriented towards the exterior surface of the protein.
- C. They are covalently linked to proximal histidine.
- D. They are hidden inside the protein.
- E. They are linked to one of the internal alpha helices

6. The R conformation of hemoglobin always predominates in which of the following tissue:

- A. RBCs
- B. Lungs
- C. Liver
- D. Kidneys
- E. Muscles

