

Plasma membrane

- The membrane is a *selective permeable barrier* consisting of a lipid bilayer (phospholipids), many proteins (carriers, channels, receptors, enzyme) and carbohydrates (glycocalyx, glycoprotein)
 - Fluid mosaic model: The arrangement of molecules within the membrane resembles a sea of containing many types of proteins
 - > The most common phospholipids are P-choline and P-ethanolamine which have a negative phosphate

0

- > Cholesterol decreaase the effect of temperature flucations on the membrane fluidity
- The lipid bilayer is <u>permeable</u> to <u>small hydrophobic molecules</u> (O₂, CO₂, steroids) and water but <u>impermmeable</u> to <u>large hydrophilic molecules</u> (such as glucose, fructose, ions)

• Functions of the membrane proteins:

- > Ion channels and transporters
 - ✓ These proteins are selective and specific
 - ✓ Transporters undergo *conformational changes* during passing a specific molecule
 - ✓ Channels can be gated or leaky channels
 - *Hyrophilic (water-soluble) molecules* pass across the membrane by channels and transporters

> Receptors

- Signal transduction via binding to speicifc ligands (hormones) and producing second messengers iside the cell (intracellulary)
- ✓ GPCR are receptors linked to G-proteins which can be G_s, G_i, G_q, ...
- ✓ G-proteins require **GTP** to be activated
- \checkmark *G_s* activates adenylyl cyclase and *G_i* inhibits adenylyl cyclase which forms cAMP
- \checkmark *G_q* activates phospholipase C-β (PLC-β) which cleaves PIP₂ into IP₃ and DAG

> Cell identity markers

- ✓ They are glycoproteins, where their <u>carbohydrate part</u> is the responsible for recognition
- ✓ Also glycolipids contribute in the cell-cell recognition
- ✓ Example: *MHC* molecules
- *Enzymes* which catalyze chemical reactions

> Cell adhesion and communication

- \checkmark It is done by some proteins, in the aid with carbohydrates
- ✓ Examples: *CAM* (cell adhesion molecules) which include *cadherins*

> *Linkers and junctions*, they include:

- ✓ *Tight junctions (impermeable junction)*
 - Prevents the passing of foreign substances to the cells (separate 2 different compartments)
 - Present in the epithelial tissue such as the skin and epithilium of the GI system
- ✓ *Gap junctions (communication junctions)*
 - Small tunnels between adjacent cells enable neighboring cell to communicate with each other
 - This tunnel is composed connexons protein which extend outward from the plasma membrane to join other connexon from the adjacent cell
 - Present in the heart (cardiac) and smooth muscle, enabling synchronyzation
- Desmosomes (adhering junctions)
 - Consist of filaments that connect adjacent cells maintaining about 20 nm between them
- Integral proteins can be channels, transporters, receptors (signal transduction) and enzymes

- Transport across the membrane can be either:
 - > Passive transport
 - ✓ Does *not require* input of energy
 - ✓ Occurs *down* the concentration gradeint (downhill)
 - ✓ Includes *simple diffusion* (across the lipid bilayer) and *facilitated diffusion* (transporters, carriers)

> Active transport

- ✓ *Requires energy* input
- Occurs *against* concentration gradeint (uphill)
- ✓ Include *primary* and *secondary* active transport

Passive transport

1. Simple Diffusion

- Passive movement of particle across the membrane directly through *lipid bilayer* or channels proteins
- It is responsible for the passage of small lipid soluble (hydrophobic) molecules across the membrane
 Examples: O₂, CO₂, steroids, monoglycerides, lipid-soluble vitamins ...
- Diffusion depends on the following:
 - **a.** Concentration gradeint (ΔC): It is the difference in the concentration of a specific molecule between the 2 sides of the membrane
 - ✓ It determines the <u>direction</u> of diffusion, where molecules difuse from the <u>higher</u> concentration to the lower concentration (downhill, down concentration gradeint)
 - \checkmark As the difference between the 2 sides increases, the rate of diffusion increases
 - ✓ It is also called *chemical gradeint* (chemical potential)
 - ✓ Also pressure and electrical gradeints affect the movement of substances across the membrane
 - **b.** *Permeability* (*P*): which depends on the lipids solubility of the transported molecule
 - \checkmark As the permeability of the molecule increases, the rate of diffusion increases
 - c. Surface area
 - \checkmark As the surface area increases, the rate of diffusion increases
 - d. *Molecular weight:* which represents the size of the molecule
 ✓ Smaller (lighter) molecules pass more easily and readily than larger (heavier) molecules
 - e. Membrane thickness (distance of movement)
 - ✓ Greater the distance the slower the rate of diffusion
- All the factors the affect diffusion are explained in Fick's law of diffusion
 - > Directly proportional factors: Concentration gradeint, Permeability, Surface area
 - > Inversely proportional factors: Molecular Weight, Membrane Thickness

2. Facilitated diffusion

- Passive movement of particle using membrane proteins such as *transporters (carriers)*
- Transportes *larger and more hydrophilic* substances
 - Example: glucose (by GLUT) in the basal surface of the enterocytes

Fick's law $J = P. \Delta C$ $P = D.A/\Delta X$ $J = D.A.\Delta C/\Delta X$

Diffusion: is the continuous movement of particles in liquids and

• It is *saturable*, which means that it has a maximum number of molecules to be transporter at the same time (limit) which is called Vmax

> Vmax is due to the <u>limited number of transporters</u> in the membrane

• Diffusion throught *channels* can be considered as *simple or facilitated diffusion*

3. Osmosis

- It is the movement of *water* across a semipermeable membrane
- Water moves from the higher concentration of free water molecules (less solute) into the lower concentration of free water molecule (higher solute)
 - > Water always goes *toward the region of higher solutes*
- *Equilibrium:* it is the condition where the *net movement equals zero*
 - > It is reached when the hydrostatic pressure equals and opposes the osmotic pressure
 - > *Hydrostatic pressur:* is the force done by the <u>volume</u> of water
 - > Osmotic pressure: is the force that drives water to go toward soultes (ions, sugars, proteins, ...)
 - > When equilibrium is reached, if an external pressure is applied, that causes *filtration*
- Concentration of particles is represented by
 - ➤ Molarity: Number of molecules per <u>liter</u> of water
 - Solution States States
 - Solution State And State A
- **Isotonic solution:** A solution with osmolarity similar to body fluids
- Hypertonic solution: A solution with osmolarity higher than body fluids
- **Hypotonic solution:** A solution with osmolarity less than body fluids
- Van't Hoff's law (π = RTC) where C is the osmolarity

Active transport

1. Primary active transport

- Requires energy input by <u>direct</u> hydrolysis of ATP
- Requires <u>transporter proteins</u> called *pumps (ATPase)*, such as:
 - \triangleright Na⁺-K⁺ pump
 - ✓ Pumps 3 Na^+ ions outward, and 2 K^+ ions inward
 - ✓ It <u>maintains the gradeint</u> of these ions across the membrane which *regulates cell volume*
 - ✓ It changes its conformation by phosphorylation and dephosphorylation
 - \succ Ca⁺⁺ pumps
 - ✓ Maintain low Ca⁺⁺ concentration in the cytosol
 - ✓ There are 2 types of Ca⁺⁺ pumps:
 - In the *plasma membrane*, which expels Ca⁺⁺ into the ECF
 - In the membranes of *internal organelles* (ER, mitochondria), which stores Ca⁺⁺ into the lumen (reducing Ca⁺⁺ in muscles causing muscle *relaxation*)

\succ H⁺ pumps (or H⁺- K⁺ pump)

- ✓ In the *pareital cells* of the gastric mucosa, which *increases acidity* (lowers pH) of the stomach
- ✓ In the distal tubules and cortical collecting ducts in the *kidney*, which pumps H^+ into the urine and so *controlling the amount of* H^+ in the body

Osmolarity of body fluids

and blood is 300 mOsm

2. Secondary active transport

- It requires energy input by **<u>indirect</u>** utilization of ATP, via utilizing the tendency of a specific particle (such as Na+) to move downhill to transport another molecule against its gradeint
 - > Utilization of the *concentration gradeint* of a particle to transport another particle
 - Uses sodium-dependent carriers
 - > Co-transport: Both substances are moved in the same direction
 - ✓ Co-transporters of *amino acids* or *glucose* in the apical surface of the enterocytes in the intestines (during absorption) which transport them with Na⁺ into the cells
 - ✓ Also, Co-transporters of Fe⁺⁺, Cl⁻, iodine and urate
 - *Counter-transport:* One substance passes in a direction and the other is pumped in *opposite* direction
 Na⁺-Ca⁺⁺ counter transporter which is found in <u>most cells</u> such as cardiac muscles
 - ✓ Na^+ - H^+ counter transporter which is found in the proximal tubules of the nephron (kidney)
- Primary and secondary active transport are *saturable* (limited, V_{max})

✤ Vesicular transport

- Used for very large particles that can't pass through the membrane
 - > They are transported via membranous vesicles
 - > It requires energy (so it can be considered as an active transport mechanism)

1. Endocytosis

- The vesicle buds from the plasma membrane and carry the substances to ER, Golgi and other organelles
- It has many types including:
 - > *Pinocytosis:* which is non-specific transport of solutions (*fluid*)
 - > *Phagocytosis:* transport large multimolecular particles into the cell
 - Receptor mediated endocytosis: most specific type

2. Exocytosis

- Cellularly synthesized molecules (neurotransmitters, hormones, ...) are transported out of the cell where the vesicle fuses with the plasma membrane and releases its contents into the ECF
 - > It occurs in the *presence of Ca*⁺⁺ ions
 - > Vesicles are mostly synthesized in the ER

3. Transcytosis

• In involves endocytosis and exocytosis

