

HISTOLOGY 2024

DR. AHMAD AL-QAWASMI

Epithelium

- Continuous sheets of cells adhering strongly to one another and to the underlying ECM, which *line internal* surfaces and *cover external* surfaces
- Epithelial tissue is *innervated* and *avascular*
 - It stands on and supported by an underlying connective tissue which provides <u>oxygen and nutrients</u> (blood supply) to the epithelium
 - > Separated from the connective tissue by a *basement membrane*
- Functions of the epithelium:
 - > *Protection* (covering, lining) like in the epidermis
 - Secretion (glandular tissue)
 - > Absorption (intestines)
 - > Detection of *sensation* (inner ear, taste buds)
 - *Contraction* (myoepithelial cells, glands)
- Embryogenesis of epithelium: epithelium arises from *all germinal layers*
 - **Ectoderm:** <u>epidermis</u> (stratified squamous keratinized)
 - > *Mesoderm:* <u>endothelium</u> (blood vessels)
 - Endoderm: <u>GIT</u> tract (not all), <u>lungs</u>
- Epithelial cells are highly polarized:
 - > *Apical surface:* faces the lumen or the external environment
 - ✓ Has microvilli, cilia, stereocilia
 - Microvilli: short extensions that increases the surface area aiding in the <u>absorption</u>
 - ✓ *Cilia*: longer and aids in *mobility* (with motor protein)
 - Stereocilia: found in the ear to provide <u>hearing</u>, <u>equilibrium</u> and absorption
 - Lateral surface: faces the sides of <u>adjacent cells</u>
 Tight junctions, desmosomes, gap junctions (intercellular junction)
 - **Basal surface:** attaches to the basement membrane
 - ✓ Basement membrane, *hemidesmosomes*
- Epithelium is classified according to the Cells' shape (columnar, cuboidal and squamous)
 Cell shape is determined by the nucleus shape (elliptic [oval], spherical or flattened)
- *Basement membrane:* Thin extracellular, felt-like sheet of macromolecules
 A semipermeable filter for substances reaching epithelial cells from below
 - > It is composed of *basal lamina* (produced by epithelium), *reticular lamina* (produced by CT)
- Molecules of basal lamina:
 - > *Type IV collagen:* a two-dimensional network of evenly spaced subunits
 - Laminin: large glycoproteins that <u>attach to integrins</u>, and project through the network of collagen IV
 - Nidogen (entactin) and perlecan: protein and a proteoglycan, <u>cross-link</u>
 <u>laminin to the collagen</u> network and help determine the *porosity* of the basal lamina and the *size of molecules able to filter* through it
- Reticular lamina
 - Contain reticular fibers (collagen type III)
 - > Anchoring fibrils of *type VII collagen* link the basal lamina with the reticular fibers

* Junctional Complexes

- They are membrane-associated structures provide <u>adhesion and communication</u> between cells
- Tight Junction (Zonula occludens)
 - > Also called *occluding junctions*
 - > They form a *seal between adjacent* cells, and they are the *most apical*
 - Caused by the tight interactions between the transmembrane proteins claudin, occludins and ZO proteins
 - The intercellular seal of tight junctions ensures that molecules crossing an epithelium in either direction do so through transcellular route not the paracellular one
 - > Defects in occludins may *compromise blood-brain-barrier* leading to *neurologic disorders*
- Adherent Junctions (Zonula Adherens)
 - Encircle the epithelial cell, usually below the tight junction
 - Firmly *anchors* cells to <u>neighboring</u> ones
 - Cell adhesion is mediated by *e-cadherin* (transmembrane glycoproteins) of each cell that bind each other in the *presence of Ca²⁺*
 - At their cytoplasmic ends, cadherins bind *catenins* that link to <u>actin</u> <u>filaments</u> with actin-binding proteins
 - The actin filaments linked to the adherens junctions form part of the "terminal web," a cytoskeletal feature at the apical pole in many epithelial cells
 - > Link cytoskeleton of adjacent cells, and strengthen the tight junctions
 - > Defects in e-cadherins causes *epithelial cell tumor (carcinoma)* which can cause malignancy
- Desmosomes
 - Disc-shaped structures that are matched with identical structures at an adjacent cell surface
 - Desmosomes contain larger members of the *cadherin* family called *desmogleins* and *desmocollins*
 - The cytoplasmic ends of these transmembrane proteins bind a <u>catenin-like protein</u> which bind <u>intermediate filament</u> proteins rather than actins
 - > Autoimmunity against desmoglein causes skin disorder where cohesion of epidermal cells decreases

• Gap Junctions (Nexus)

- Mediate intercellular communication
- Connexins (transmembrane proteins) form <u>hexameric</u> complexes of proteins called *connexons*, each of which has a central hydrophilic pore about 1.5 nm
- > Permit intercellular *exchange* of molecules with small molecules < 1.5 nm
- > Mutations in connexin causes neuropathy and deafness
- Hemidesmosomes
 - ▶ Located on the *basal* epithelial surface and attach cells to the basal lamina
 - Resemble a half-desmosome ultra structurally, but unlike desmosomes the transmembrane proteins that indirectly link to cytokeratin <u>intermediate</u> <u>filaments</u> are <u>integrins</u> rather than cadherins
 - The integrins of hemidesmosomes bind primarily to <u>laminin</u> molecules in the basal lamina and the anchor cytoskeleton to basal lamina
 - Epidermolysis bullosa is a skin blustering disorder due to mutation in integrin- β 4

Transmembrane glycoprotein (integrin) in extracellular space